

Welcome to Enso’s documentation!

An overview of the developer interface to Enso.

Enso workflow

Enso is tool intended to provide a standard interface for the benchmarking of embedding and transfer learning methods for natural language processing tasks. Although there are other effective approaches to applying transfer learning to natural language processing, it’s built on the assumption that the approach to “transfer learning” adheres to the below flow. This approach is designed to replicate a scenario where a pool of unlabeled data is available, and labelers with subject matter expertise have a limited amount of time to provide labels for a subset of the unlabeled data.

	Download pre-ETL’ed source datasets for testing (python -m enso.download)

	All examples in the dataset are “featurized” via a pre-trained source model (python -m enso.featurize)

	Re-represented data is separated into train and test sets

	A fixed number of examples from the train set is selected to use as training data via the selected sampling strategy

	The training data subset is optionally over or under-sampled to account for variation in class balance

	A target model is trained using the featurized training examples as inputs (python -m enso.experiment)

	The target model is benchmarked on all featurized test examples

	The process is repeated for all combinations of featurizers, dataset sizes, target model architectures, etc.

	Results are visualized and manually inspected (python -m enso.visualize)

Running Experiments with Enso

Each component of Enso is designed to be extensible and customizable. Base classes for enso.Featurizer, enso.Sampler, enso.Experiment, enso.Metric and enso.Visualizer are provided in order to enable anyone to implement and test their own ideas. Subclass those base classes and modify enso/config.py to run your own experiments, and consider contributing the results back to the community to help other community members test against better baselines.

Enso Configuration

Experiment settings are managed through the modification of enso/config.py. The main parameters of interest are:

	DATASETS: A list of the datasets that you want to include in your experiments.

	FEATURES: A list of pre-computed features to include in your experiments. Only features for your specified datasets will be used.

	EXPERIMENTS: A list of the experiments to run on top of the feature sets that have selected.

	METRICS: A list of metrics you’d like to see for the combination of experiments being run

	
	TEST_SETUP: More detailed test information, likely to vary quite a bit from run to run.

	
	train_sizes: A list of training set sizes to be experimented with.

	n_splits: The number of CV splits to perform on each run.

	VISUALIZATIONS: A list of the visualizations to create for result visualization.

	
	VISUALIZATION_SETUP: More detailed visualization information with visualization-specific options.

	
	<visualization_name>: Mapping of all the visualization-specific options you want to pass

Dataset Formatting

In order to be a valid dataset, each dataset csv in the Data folder must include a “Text” column and a “Target” column. For now, the “Target” column must be a string class label. No rows may have missing values.

Featurization

Base Classes

	
class enso.featurize.Featurizer(*args, **kwargs)

	Base class for building featurizers.

	
featurize(text)

	
	Parameters

	text – text of a singular example

	Returns

	np.ndarray representation of text

	
featurize_batch(X, batch_size=32)

	
	Parameters

	
	X – pd.Series that contains raw text to featurize

	batch_size – int number of examples to process per batch

	Returns

	list of np.ndarray representations of text

	
generate(dataset, dataset_name)

	Given a dataset pandas DataFrame and string dataset_name,
add column “Features” to the provided pd.DataFrame and serialize the result
to the results folder listed in config.py.

If a given featurizer exposes a featurize_batch() method, that method will be
called to perform featurization. Otherwise, Featurizer’s will fall
back to calling featurize() on each individual example.

	Parameters

	
	dataset – pd.DataFrame object that must contain a Text column.

	dataset_name – str name to use as a save location in the config.FEATURES_DIRECTORY.

	
load()

	Method called in flow of python -m enso.featurize to prevent loading
pre-trained models into memory on file import.

If loading a pre-trained model into memory is not required, Featurizer.load()
defaults to pass.

	
name()

	Prints the name of the current class to aid logging and result formatting.

Local Featurizers

These Featurizers will be run on your local machine to embed training and test examples.

Hosted Featurizers

The organization behind enso, indico, hosts a variety of pre-trained models that you can employ as source models for your experiments. These API wrappers assume that an INDICO_API_KEY env variable is present in order to authenticate calls made to the indico API. If you would like to test / benchmark indico’s hosted embeddings on larger data volumes, reach out to contact@indico.io and inquire about free API credit for academic use.

	
class enso.featurize.indico_features.IndicoStandard(*args, **kwargs)

	Featurizer that uses indico’s standard features.

	
featurize(text)

	
	Parameters

	text – text of a singular example

	Returns

	np.ndarray representation of text

	
featurize_batch(X, batch_size=32, **kwargs)

	
	Parameters

	
	X – pd.Series that contains raw text to featurize

	batch_size – int number of examples to process per batch

	Returns

	list of np.ndarray representations of text

	
generate(dataset, dataset_name)

	Given a dataset pandas DataFrame and string dataset_name,
add column “Features” to the provided pd.DataFrame and serialize the result
to the results folder listed in config.py.

If a given featurizer exposes a featurize_batch() method, that method will be
called to perform featurization. Otherwise, Featurizer’s will fall
back to calling featurize() on each individual example.

	Parameters

	
	dataset – pd.DataFrame object that must contain a Text column.

	dataset_name – str name to use as a save location in the config.FEATURES_DIRECTORY.

	
load()

	Method called in flow of python -m enso.featurize to prevent loading
pre-trained models into memory on file import.

If loading a pre-trained model into memory is not required, Featurizer.load()
defaults to pass.

	
name()

	Prints the name of the current class to aid logging and result formatting.

	
class enso.featurize.indico_features.IndicoSentiment(*args, **kwargs)

	Featurizer that uses indico’s sentiment features.

	
featurize(text)

	
	Parameters

	text – text of a singular example

	Returns

	np.ndarray representation of text

	
featurize_batch(X, batch_size=32, **kwargs)

	
	Parameters

	
	X – pd.Series that contains raw text to featurize

	batch_size – int number of examples to process per batch

	Returns

	list of np.ndarray representations of text

	
generate(dataset, dataset_name)

	Given a dataset pandas DataFrame and string dataset_name,
add column “Features” to the provided pd.DataFrame and serialize the result
to the results folder listed in config.py.

If a given featurizer exposes a featurize_batch() method, that method will be
called to perform featurization. Otherwise, Featurizer’s will fall
back to calling featurize() on each individual example.

	Parameters

	
	dataset – pd.DataFrame object that must contain a Text column.

	dataset_name – str name to use as a save location in the config.FEATURES_DIRECTORY.

	
load()

	Method called in flow of python -m enso.featurize to prevent loading
pre-trained models into memory on file import.

If loading a pre-trained model into memory is not required, Featurizer.load()
defaults to pass.

	
name()

	Prints the name of the current class to aid logging and result formatting.

	
class enso.featurize.indico_features.IndicoFinance(*args, **kwargs)

	Featurizer that uses indico’s finance features.

	
featurize(text)

	
	Parameters

	text – text of a singular example

	Returns

	np.ndarray representation of text

	
featurize_batch(X, batch_size=32, **kwargs)

	
	Parameters

	
	X – pd.Series that contains raw text to featurize

	batch_size – int number of examples to process per batch

	Returns

	list of np.ndarray representations of text

	
generate(dataset, dataset_name)

	Given a dataset pandas DataFrame and string dataset_name,
add column “Features” to the provided pd.DataFrame and serialize the result
to the results folder listed in config.py.

If a given featurizer exposes a featurize_batch() method, that method will be
called to perform featurization. Otherwise, Featurizer’s will fall
back to calling featurize() on each individual example.

	Parameters

	
	dataset – pd.DataFrame object that must contain a Text column.

	dataset_name – str name to use as a save location in the config.FEATURES_DIRECTORY.

	
load()

	Method called in flow of python -m enso.featurize to prevent loading
pre-trained models into memory on file import.

If loading a pre-trained model into memory is not required, Featurizer.load()
defaults to pass.

	
name()

	Prints the name of the current class to aid logging and result formatting.

	
class enso.featurize.indico_features.IndicoTopics(*args, **kwargs)

	Featurizer that uses indico’s topics features.

	
featurize(text)

	
	Parameters

	text – text of a singular example

	Returns

	np.ndarray representation of text

	
featurize_batch(X, batch_size=32, **kwargs)

	
	Parameters

	
	X – pd.Series that contains raw text to featurize

	batch_size – int number of examples to process per batch

	Returns

	list of np.ndarray representations of text

	
generate(dataset, dataset_name)

	Given a dataset pandas DataFrame and string dataset_name,
add column “Features” to the provided pd.DataFrame and serialize the result
to the results folder listed in config.py.

If a given featurizer exposes a featurize_batch() method, that method will be
called to perform featurization. Otherwise, Featurizer’s will fall
back to calling featurize() on each individual example.

	Parameters

	
	dataset – pd.DataFrame object that must contain a Text column.

	dataset_name – str name to use as a save location in the config.FEATURES_DIRECTORY.

	
load()

	Method called in flow of python -m enso.featurize to prevent loading
pre-trained models into memory on file import.

If loading a pre-trained model into memory is not required, Featurizer.load()
defaults to pass.

	
name()

	Prints the name of the current class to aid logging and result formatting.

	
class enso.featurize.indico_features.IndicoTransformer(*args, **kwargs)

	Featurizer that uses indico’s transformer features.

	
featurize(text)

	
	Parameters

	text – text of a singular example

	Returns

	np.ndarray representation of text

	
featurize_batch(X, batch_size=32, **kwargs)

	
	Parameters

	
	X – pd.Series that contains raw text to featurize

	batch_size – int number of examples to process per batch

	Returns

	list of np.ndarray representations of text

	
generate(dataset, dataset_name)

	Given a dataset pandas DataFrame and string dataset_name,
add column “Features” to the provided pd.DataFrame and serialize the result
to the results folder listed in config.py.

If a given featurizer exposes a featurize_batch() method, that method will be
called to perform featurization. Otherwise, Featurizer’s will fall
back to calling featurize() on each individual example.

	Parameters

	
	dataset – pd.DataFrame object that must contain a Text column.

	dataset_name – str name to use as a save location in the config.FEATURES_DIRECTORY.

	
load()

	Method called in flow of python -m enso.featurize to prevent loading
pre-trained models into memory on file import.

If loading a pre-trained model into memory is not required, Featurizer.load()
defaults to pass.

	
name()

	Prints the name of the current class to aid logging and result formatting.

	
class enso.featurize.indico_features.IndicoEmotion(*args, **kwargs)

	Featurizer that uses indico’s emotion features.

	
featurize(text)

	
	Parameters

	text – text of a singular example

	Returns

	np.ndarray representation of text

	
featurize_batch(X, batch_size=32, **kwargs)

	
	Parameters

	
	X – pd.Series that contains raw text to featurize

	batch_size – int number of examples to process per batch

	Returns

	list of np.ndarray representations of text

	
generate(dataset, dataset_name)

	Given a dataset pandas DataFrame and string dataset_name,
add column “Features” to the provided pd.DataFrame and serialize the result
to the results folder listed in config.py.

If a given featurizer exposes a featurize_batch() method, that method will be
called to perform featurization. Otherwise, Featurizer’s will fall
back to calling featurize() on each individual example.

	Parameters

	
	dataset – pd.DataFrame object that must contain a Text column.

	dataset_name – str name to use as a save location in the config.FEATURES_DIRECTORY.

	
load()

	Method called in flow of python -m enso.featurize to prevent loading
pre-trained models into memory on file import.

If loading a pre-trained model into memory is not required, Featurizer.load()
defaults to pass.

	
name()

	Prints the name of the current class to aid logging and result formatting.

	
class enso.featurize.indico_features.IndicoFastText(*args, **kwargs)

	Featurizer that uses indico’s fasttext features.

	
featurize(text)

	
	Parameters

	text – text of a singular example

	Returns

	np.ndarray representation of text

	
featurize_batch(X, batch_size=32, **kwargs)

	
	Parameters

	
	X – pd.Series that contains raw text to featurize

	batch_size – int number of examples to process per batch

	Returns

	list of np.ndarray representations of text

	
generate(dataset, dataset_name)

	Given a dataset pandas DataFrame and string dataset_name,
add column “Features” to the provided pd.DataFrame and serialize the result
to the results folder listed in config.py.

If a given featurizer exposes a featurize_batch() method, that method will be
called to perform featurization. Otherwise, Featurizer’s will fall
back to calling featurize() on each individual example.

	Parameters

	
	dataset – pd.DataFrame object that must contain a Text column.

	dataset_name – str name to use as a save location in the config.FEATURES_DIRECTORY.

	
load()

	Method called in flow of python -m enso.featurize to prevent loading
pre-trained models into memory on file import.

If loading a pre-trained model into memory is not required, Featurizer.load()
defaults to pass.

	
name()

	Prints the name of the current class to aid logging and result formatting.

Sampling

Apply a strategy to select training examples to provide to the target model.

Base Classes

	
class enso.sample.Sampler(data, train_labels, train_indices, train_size)

	Base class for all Sampler’s

	Parameters

	
	data – pd.Series of feature vectors

	train_labels – pd.Series of targets

	train_indices – pd.Series of example indices

	train_size – int number of examples to select

	
sample()

	Given the settings provided at initialization, apply the provided sampling strategy

	Returns

	np.array of example indices selected by Sampler.

Included Samplers

	
class enso.sample.random_sampler.Random(data, train_labels, train_indices, train_size)

	Randomly selects examples from the training dataset.

	Parameters

	
	data – pd.Series of feature vectors

	train_labels – pd.Series of targets

	train_indices – pd.Series of example indices

	train_size – int number of examples to select

	
sample()

	Randomly samples feature vectors.

	Returns

	np.array of example indices selected by random sampling

	
class enso.sample.orthogonal_sampler.Orthogonal(data, train_labels, train_indices, train_size)

	Randomly selects starting points, then selects additional points for which
the product of the cosine distance to all starting points is maximally large.
Each selected point is then iteratively added to the list of starting points.

	Parameters

	
	data – pd.Series of feature vectors

	train_labels – pd.Series of targets

	train_indices – pd.Series of example indices

	train_size – int number of examples to select

	
sample()

	Applies the orthogonal sampling strategy.

	Returns

	np.array of example indices selected by Orthogonal.

	
class enso.sample.kcenter_sampler.KCenter(data, train_labels, train_indices, train_size)

	Randomly selects an example from each class to use as “centers”,
then selects points that are maximally distant from any given center
to use as training examples.

	Parameters

	
	data – pd.Series of feature vectors

	train_labels – pd.Series of targets

	train_indices – pd.Series of example indices

	train_size – int number of examples to select

	
sample()

	Applies the KCenter sampling strategy.

	Returns

	np.array of example indices selected by KCenter.

Resampling

After a subset of examples is selected, certain examples may be duplicated or removed to adjust
the class frequency statistics of the training data.

Included Resampling Options

	
enso.resample.oversample(X, y, max_ratio=50)

	Ensure each class occurs with approximately even frequency in the training set by
duplicating examples from relatively rare classes.

	Parameters

	
	X – np.ndarray of input features

	y – np.ndarray of corresponding targets

	max_ratio – input examples should be duplicated no more than this amount

Target Model Training

After featurization and sampling, a target model is trained on the selected training data.
Each Experiment must be self-contained – if hyperparameter selection is required, it should
be packaged as part of the Experiment child class.

Base Classes

	
class enso.experiment.Experiment(*args, **kwargs)

	Base class for all Experiment’s.

If hyperparameter selection is necessary for a given target model, the Experiment
is responsible for performing hyperparameter selection withing the context of fit().

	
fit(X, y)

	Method to begin training of a given target model provided a set of input features
and corresponding targets.

	Parameters

	
	X – np.ndarray of input features sampled from training data.

	y – np.ndarray of corresponding targets sampled from training data.

	
name()

	Prints the name of the current class to aid logging and result formatting.

	
predict(X)

	Produce a pd.DataFrame object contains target model predictions.

	Parameters

	X – np.ndarray of input features from test data.

	Returns

	pd.DataFrame of target model predictions

Prediction format is dependant on class of experiment.

	
class enso.experiment.ClassificationExperiment(*args, **kwargs)

	Base class for classification experiments.

	
fit(X, y)

	Method to begin training of a given target model provided a set of input features
and corresponding targets.

	Parameters

	
	X – np.ndarray of input features sampled from training data.

	y – np.ndarray of corresponding targets sampled from training data.

	
name()

	Prints the name of the current class to aid logging and result formatting.

	
predict(X)

	Produce a pd.DataFrame object that maps class labels to class probabilities given test inputs.

	Parameters

	X – np.ndarray of input features from test data.

	Returns

	pd.DataFrame object. Each column should represent a class, and each row should represent an array of probabilities across classes.

	
class enso.experiment.grid_search.GridSearch(*args, **kwargs)

	Base class for classification models that select hyperparameters via cross validation.
Assumes the base_model property set on child classes inherits from
sklearn.base.BaseEstimator and implements predict_proba and score.

	Variables

	
	base_model – Class name of base model, must be set by child classes.

	param_grid – Dictionary that maps from class paramaters to an array of values to search over. Must be set by child classes.

	
fit(X, y)

	Runs grid search over self.param_grid on self.base_model to optimize hyper-parameters using
KFolds cross-validation, then retrains using the selected parameters on the full training set.

	Parameters

	
	X – np.ndarray of input features sampled from training data.

	y – np.ndarray of corresponding targets sampled from training data.

	
name()

	Prints the name of the current class to aid logging and result formatting.

	
predict(X, **kwargs)

	Predict results on test set based on current internal model.

Included Experiments:

	
class enso.experiment.logistic_regression.LogisticRegressionCV(*args, **kwargs)

	Implementation of a grid-search optimized Logistic Regression model.

	
fit(X, y)

	Runs grid search over self.param_grid on self.base_model to optimize hyper-parameters using
KFolds cross-validation, then retrains using the selected parameters on the full training set.

	Parameters

	
	X – np.ndarray of input features sampled from training data.

	y – np.ndarray of corresponding targets sampled from training data.

	
name()

	Prints the name of the current class to aid logging and result formatting.

	
predict(X, **kwargs)

	Predict results on test set based on current internal model.

	
class enso.experiment.naive_bayes.NaiveBayes(*args, **kwargs)

	Gaussian naive bayes model.

	
name()

	Prints the name of the current class to aid logging and result formatting.

	
predict(X, **kwargs)

	Predict results on test set based on current internal model.

	
class enso.experiment.random_forest.RandomForestCV(*args, **kwargs)

	Implementation of a grid-search optimized RandomForest.

	
fit(X, y)

	Runs grid search over self.param_grid on self.base_model to optimize hyper-parameters using
KFolds cross-validation, then retrains using the selected parameters on the full training set.

	Parameters

	
	X – np.ndarray of input features sampled from training data.

	y – np.ndarray of corresponding targets sampled from training data.

	
name()

	Prints the name of the current class to aid logging and result formatting.

	
predict(X, **kwargs)

	Predict results on test set based on current internal model.

	
class enso.experiment.svm.SupportVectorMachineCV(*args, **kwargs)

	Implementation of a grid-search optimized RBF-SVM.

	
fit(X, y)

	Runs grid search over self.param_grid on self.base_model to optimize hyper-parameters using
KFolds cross-validation, then retrains using the selected parameters on the full training set.

	Parameters

	
	X – np.ndarray of input features sampled from training data.

	y – np.ndarray of corresponding targets sampled from training data.

	
name()

	Prints the name of the current class to aid logging and result formatting.

	
predict(X, **kwargs)

	Predict results on test set based on current internal model.

Visualization of Results

Base Classes

	
class enso.visualize.Visualizer(*args, **kwargs)

	Base class for creating visualizations.

	
name()

	Prints the name of the current class to aid logging and result formatting.

	
visualize(results, **kwargs)

	Create visualization for the given test_run.
Setting display to True will default to showing the generated visualizations as they are created,
while setting write to True will default to saving the generated image in the Results directory.

	Parameters

	results – pd.DataFrame of results, loaded from results .csv file.

Included Visualizers

	
class enso.visualize.facets.FacetGridVisualizer(*args, **kwargs)

	Create a grid of line graphs based on the value of config.VISUALIZATION_OPTIONS

	
handle_categories(func)

	Execute a category strategy on a result set.
Force the user to make a choice about handling predictions for different classes.
It should support either being one of the axes for the Main Visualization,
or there should be a strategy for turning multiple entries into a single one

	
handle_cv(func)

	Execute a cv strategy on a result_set.
Same as handle_categories, but for multiple cv runs rather than multiple classes

	
name()

	Prints the name of the current class to aid logging and result formatting.

	
visualize(results, x_tile, y_tile, x_axis, y_axis, lines, results_id=None, filename='FacetGridVisualizer', **kwargs)

	Create a tiled visualization of experiment results.

	Parameters

	
	results – pd.DataFrame of results, loaded from results .csv file.

	x_tile – string name of DataFrame column to vary over the x axis of the grid of line graphs

	y_tile – string name of DataFrame column to vary over the y axis of the grid of line graphs

	x_axis – string name of DataFrame column to plot on the x axis within each individual line graph

	y_axis – string name of DataFrame column to plot on the y axis within each individual line graph

	lines – string name or list of DataFrame column string names displayed as separate lines within each graph.
Providing multiple values means that each unique combination of values will be displayed as a single line.

	results_id – string name of folder to save resulting visual in, relative to the root of the results directory

	filename – filename (excluding filetype) to use when saving visualization. Value is relative to folder specified by results_id.

 Python Module Index

 e

 		 	

 		
 e	

 	
 	
 enso	

Index

 C
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | N
 | O
 | P
 | R
 | S
 | V

C

 	
 	ClassificationExperiment (class in enso.experiment)

E

 	
 	enso (module)

 	
 	Experiment (class in enso.experiment)

F

 	
 	FacetGridVisualizer (class in enso.visualize.facets)

 	featurize() (enso.featurize.Featurizer method)

 	(enso.featurize.indico_features.IndicoEmotion method)

 	(enso.featurize.indico_features.IndicoFastText method)

 	(enso.featurize.indico_features.IndicoFinance method)

 	(enso.featurize.indico_features.IndicoSentiment method)

 	(enso.featurize.indico_features.IndicoStandard method)

 	(enso.featurize.indico_features.IndicoTopics method)

 	(enso.featurize.indico_features.IndicoTransformer method)

 	featurize_batch() (enso.featurize.Featurizer method)

 	(enso.featurize.indico_features.IndicoEmotion method)

 	(enso.featurize.indico_features.IndicoFastText method)

 	(enso.featurize.indico_features.IndicoFinance method)

 	(enso.featurize.indico_features.IndicoSentiment method)

 	(enso.featurize.indico_features.IndicoStandard method)

 	(enso.featurize.indico_features.IndicoTopics method)

 	(enso.featurize.indico_features.IndicoTransformer method)

 	
 	Featurizer (class in enso.featurize)

 	fit() (enso.experiment.ClassificationExperiment method)

 	(enso.experiment.Experiment method)

 	(enso.experiment.grid_search.GridSearch method)

 	(enso.experiment.logistic_regression.LogisticRegressionCV method)

 	(enso.experiment.random_forest.RandomForestCV method)

 	(enso.experiment.svm.SupportVectorMachineCV method)

G

 	
 	generate() (enso.featurize.Featurizer method)

 	(enso.featurize.indico_features.IndicoEmotion method)

 	(enso.featurize.indico_features.IndicoFastText method)

 	(enso.featurize.indico_features.IndicoFinance method)

 	(enso.featurize.indico_features.IndicoSentiment method)

 	(enso.featurize.indico_features.IndicoStandard method)

 	(enso.featurize.indico_features.IndicoTopics method)

 	(enso.featurize.indico_features.IndicoTransformer method)

 	
 	GridSearch (class in enso.experiment.grid_search)

H

 	
 	handle_categories() (enso.visualize.facets.FacetGridVisualizer method)

 	
 	handle_cv() (enso.visualize.facets.FacetGridVisualizer method)

I

 	
 	IndicoEmotion (class in enso.featurize.indico_features)

 	IndicoFastText (class in enso.featurize.indico_features)

 	IndicoFinance (class in enso.featurize.indico_features)

 	
 	IndicoSentiment (class in enso.featurize.indico_features)

 	IndicoStandard (class in enso.featurize.indico_features)

 	IndicoTopics (class in enso.featurize.indico_features)

 	IndicoTransformer (class in enso.featurize.indico_features)

K

 	
 	KCenter (class in enso.sample.kcenter_sampler)

L

 	
 	load() (enso.featurize.Featurizer method)

 	(enso.featurize.indico_features.IndicoEmotion method)

 	(enso.featurize.indico_features.IndicoFastText method)

 	(enso.featurize.indico_features.IndicoFinance method)

 	(enso.featurize.indico_features.IndicoSentiment method)

 	(enso.featurize.indico_features.IndicoStandard method)

 	(enso.featurize.indico_features.IndicoTopics method)

 	(enso.featurize.indico_features.IndicoTransformer method)

 	
 	LogisticRegressionCV (class in enso.experiment.logistic_regression)

N

 	
 	NaiveBayes (class in enso.experiment.naive_bayes)

 	name() (enso.experiment.ClassificationExperiment method)

 	(enso.experiment.Experiment method)

 	(enso.experiment.grid_search.GridSearch method)

 	(enso.experiment.logistic_regression.LogisticRegressionCV method)

 	(enso.experiment.naive_bayes.NaiveBayes method)

 	(enso.experiment.random_forest.RandomForestCV method)

 	(enso.experiment.svm.SupportVectorMachineCV method)

 	(enso.featurize.Featurizer method)

 	(enso.featurize.indico_features.IndicoEmotion method)

 	(enso.featurize.indico_features.IndicoFastText method)

 	(enso.featurize.indico_features.IndicoFinance method)

 	(enso.featurize.indico_features.IndicoSentiment method)

 	(enso.featurize.indico_features.IndicoStandard method)

 	(enso.featurize.indico_features.IndicoTopics method)

 	(enso.featurize.indico_features.IndicoTransformer method)

 	(enso.visualize.Visualizer method)

 	(enso.visualize.facets.FacetGridVisualizer method)

O

 	
 	Orthogonal (class in enso.sample.orthogonal_sampler)

 	
 	oversample() (in module enso.resample)

P

 	
 	predict() (enso.experiment.ClassificationExperiment method)

 	(enso.experiment.Experiment method)

 	(enso.experiment.grid_search.GridSearch method)

 	(enso.experiment.logistic_regression.LogisticRegressionCV method)

 	(enso.experiment.naive_bayes.NaiveBayes method)

 	(enso.experiment.random_forest.RandomForestCV method)

 	(enso.experiment.svm.SupportVectorMachineCV method)

R

 	
 	Random (class in enso.sample.random_sampler)

 	
 	RandomForestCV (class in enso.experiment.random_forest)

S

 	
 	sample() (enso.sample.kcenter_sampler.KCenter method)

 	(enso.sample.Sampler method)

 	(enso.sample.orthogonal_sampler.Orthogonal method)

 	(enso.sample.random_sampler.Random method)

 	
 	Sampler (class in enso.sample)

 	SupportVectorMachineCV (class in enso.experiment.svm)

V

 	
 	visualize() (enso.visualize.facets.FacetGridVisualizer method)

 	(enso.visualize.Visualizer method)

 	
 	Visualizer (class in enso.visualize)

 nav.xhtml

 Table of Contents

 		
 Welcome to Enso’s documentation!

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

